11 research outputs found

    Amorphous and Polycrystalline Photoconductors for Direct Conversion Flat Panel X-Ray Image Sensors

    Get PDF
    In the last ten to fifteen years there has been much research in using amorphous and polycrystalline semiconductors as x-ray photoconductors in various x-ray image sensor applications, most notably in flat panel x-ray imagers (FPXIs). We first outline the essential requirements for an ideal large area photoconductor for use in a FPXI, and discuss how some of the current amorphous and polycrystalline semiconductors fulfill these requirements. At present, only stabilized amorphous selenium (doped and alloyed a-Se) has been commercialized, and FPXIs based on a-Se are particularly suitable for mammography, operating at the ideal limit of high detective quantum efficiency (DQE). Further, these FPXIs can also be used in real-time, and have already been used in such applications as tomosynthesis. We discuss some of the important attributes of amorphous and polycrystalline x-ray photoconductors such as their large area deposition ability, charge collection efficiency, x-ray sensitivity, DQE, modulation transfer function (MTF) and the importance of the dark current. We show the importance of charge trapping in limiting not only the sensitivity but also the resolution of these detectors. Limitations on the maximum acceptable dark current and the corresponding charge collection efficiency jointly impose a practical constraint that many photoconductors fail to satisfy. We discuss the case of a-Se in which the dark current was brought down by three orders of magnitude by the use of special blocking layers to satisfy the dark current constraint. There are also a number of polycrystalline photoconductors, HgI2 and PbO being good examples, that show potential for commercialization in the same way that multilayer stabilized a-Se x-ray photoconductors were developed for commercial applications. We highlight the unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube. An all solid state version of the HARP has been recently demonstrated with excellent avalanche gains; the latter is expected to lead to a number of novel imaging device applications that would be quantum noise limited. While passive pixel sensors use one TFT (thin film transistor) as a switch at the pixel, active pixel sensors (APSs) have two or more transistors and provide gain at the pixel level. The advantages of APS based x-ray imagers are also discussed with examples

    Modeling the Performance of a Hybrid Pixel Detector for Digital X-ray Imaging

    No full text
    The development of digital detectors for X-ray imaging in medical diagnostics receives an increasing amount of attention. The detector under development at the Department of Radiation Sciences at Uppsala University is a hybrid pixel detector, which consists of a semiconductor sensor mounted onto a readout chip. The readout chip is capable of performing photon counting and has an externally adjustable threshold. A simulation tool for the detector and a model applying the linear-systems transfer theory to X-ray hybrid pixel detectors have been developed. Also a characterization of the readout chip has been done. In order to estimate the potential of the detector for diagnostic radiology, we investigate the image quality using the spatial frequency dependent detective quantum efficiency (DQE). By means of the detector simulations, the influence of threshold setting, noise sources, level of exposure and charge sharing on the DQE have been studied. By means of the linear-systems theory, a single analytical expression is provided to obtain the DQE of a hybrid pixel detector. The method developed in this thesis will make it possible to optimize a detector design according to a particular medical application. It will also permit modifications and new features to be included without having to construct a full detector system

    Assessment of accidental uptake of iodine-131 in emergency situations

    No full text

    Lessons learned from the eurados survey on individual monitoring data and internal dose assessments of foreigners exposed in Japan following the Fukushima Daiichi NPP accident

    No full text
    International audienceEuropean Radiation Dosimetry Group e. V. (EURADOS) survey on individual monitoring data and dose assessment has been carried out for 550 foreigners returning home after being exposed in Japan to intakes of radionuclides (mainly 131I, 132I, 132Te, 134Cs and 137Cs) as a consequence of the Fukushima Daiichi NPP accident. In vivo and in vitro measurements were performed in their respective countries at an early stage after that accident. Intakes of radionuclides were detected in 208 persons from Europe and Canada, but the committed effective dose E(50) was below the annual dose limit for the public (andlt;1 mSv) in all the cases. Lessons learned from this EURADOS survey are presented here regarding not only internal dosimetry issues, but also the management of the emergency situation, the perception of the risk of health effects due to radiation and the communication with exposed persons who showed anxiety and lack of trust in monitoring data and dose assessments. © The Author 2015. Published by Oxford University Press. All rights reserved
    corecore